To explore an effective analysis model and method for estimating Cinnamomum camphora’s (C. camphora’s) growth using unmanned aerial vehicle (UAV) multispectral technology, we obtained C. camphora’s canopy spectral reflectance using a UAV-mounted multispectral camera and simultaneously measured four single-growth indicators: Soil and Plant Analyzer Development (SPAD)value, aboveground biomass (AGB), plant height (PH), and leaf area index (LAI). The coefficient of variation and equal weighting methods were used to construct the comprehensive growth monitoring indicators (CGMI) for C. camphora. A multispectral inversion model of integrated C. camphora growth was established using the multiple linear regression (MLR), partial least squares (PLS), support vector regression (SVR), random forest (RF), radial basis function neural network (RBFNN), back propagation neural network (BPNN), and whale optimization algorithm (WOA)-optimized BPNN models. The optimal model was selected based on the coefficient of determination (R2), normalized root mean square error (NRMSE) and mean absolute percentage error (MAPE). Our findings indicate that apparent differences in the accuracy with different model, and the WOA–BPNN model is the best model to invert the growth potential of C. camphora, the R2 of the model test set was 0.9020, the RMSE was 0.0722, and the MAPE was 7%. The R2 of the WOA–BPNN model improved by 18%, the NRMSE decreased by 33%, and the MAPE decreased by 9% compared with the BPNN model. This study provides technical support for the modern field management of C. camphora essential oil and other dwarf forestry industries.