Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8-22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes. diffusion imaging | gender differences S ex differences are of enduring scientific and societal interest because of their prominence in the behavior of humans and nonhuman species (1). Behavioral differences may stem from complementary roles in procreation and social structure; examples include enhanced motor and spatial skills and greater proclivity for physical aggression in males and enhanced verbally mediated memory and social cognition in females (2, 3). With the advent of neuroimaging, multiple studies have found sex differences in the brain (4) that could underlie the behavioral differences. Males have larger crania, proportionate to their larger body size, and a higher percentage of white matter (WM), which contains myelinated axonal fibers, and cerebrospinal fluid (5), whereas women demonstrate a higher percentage of gray matter after correcting for intracranial volume effect (6). Sex differences in the relative size and shape of specific brain structures have also been reported (7), including the hippocampus, amygdala (8, 9), and corpus callosum (CC) (10). Furthermore, developmental differences in tissue growth suggest that there is an anatomical sex difference during maturation (11,12), although links to observed behavioral differences have not been established.Recent studies have used diffusion tensor imaging (DTI) to characterize WM architecture and underlying fiber tracts by exploiting the anisotropic water diffusion in WM (13-15). Examination of DTI-based scalar measures (16) of fractional anisotropy (FA) and mean diffusivity (MD) has demonstrated diverse outcomes that include increased FA and decreased MD in males in major WM regions (17-19), higher CC-specific...