“…Gender affects myriad aspects of NLP, including corpora, tasks, algorithms, and systems Costa-jussà, 2019;Sun et al, 2019). For example, statistical gender biases are rampant in word embeddings (Jurgens et al, 2012;Bolukbasi et al, 2016;Caliskan et al, 2017;Garg et al, 2018;Zhao et al, 2018b;Basta et al, 2019;Chaloner and Maldonado, 2019;Du et al, 2019;Ethayarajh et al, 2019;Kaneko and Bollegala, 2019;Kurita et al, 2019;-including multilingual ones (Escudé Font and Costa-jussà, 2019;Zhou et al, 2019)-and affect a wide range of downstream tasks including coreference resolution (Zhao et al, 2018a;Cao and Daumé III, 2020;Emami et al, 2019), part-ofspeech and dependency parsing (Garimella et al, 2019), language modeling (Qian et al, 2019;Nangia et al, 2020), appropriate turn-taking classification (Lepp, 2019), relation extraction (Gaut et al, 2020), identification of offensive content (Sharifirad and Matwin, 2019;, and machine translation (Stanovsky et al, 2019;Hovy et al, 2020).…”