Sex differences in the processing of cognitively demanding tasks have attracted much attention in recent years. While there seems to be some agreement on differences between males and females concerning spatial abilities and language skills, a consensus regarding executive functions or cognitive control has not been reached yet. In the present study, male and female subjects participated in a lateralized, tactile Stop-Signal task. Although the behavioral data did not show any differences between sexes, event-related potentials pointed to varieties in neurocognitive processing. As inferred from N200 amplitudes, differences between left- and right-hand stimulation suggested a strong degree of functional lateralization in males in accordance with a left-hemispheric dominance. Females, on the other hand, rather seemed to exhibit a functionally symmetric organization of relevant processes. The P300 did also show evidence of sex-related differences, reflecting disparities in the degree or quality of interhemispheric interaction. In addition, behavioral and electrophysiological parameters were correlated with individual metrics concerning the degree of midcingulate folding asymmetry and the morphology of the corpus callosum. Differential associations of these morphological characteristics with the N200 and P300, respectively, underscore the notion of relevant structure-function associations of the midcingulate cortex and the N200 on the one hand, and the corpus callosum and the P300 on the other hand. Obviously, these variations in neuroanatomy contribute to the observed behavioral and electrophysiological differences between women and men.