Objective
To test if intraarticular corticosteroid injection mitigates injury-induced synovitis and collagen degradation after anterior cruciate ligament (ACL) transection and characterize the synovial response using a functional genomics approach in a preclinical model of post- traumatic osteoarthritis.
Methods
Yorkshire pigs received untreated unilateral ACL transection (ACLT, n=6) or transection with immediate injection of 20mg triamcinolone acetonide (STEROID, n=6). Total synovial membrane cellularity and synovial fluid concentration of COL-2 3/4C short neoepitope bearing collagen fragments at 14 days post-injury were primary endpoints and compared between ACLT, STEROID and INTACT (n=6 uninjured knees). Cells were differentiated by histological phenotype and counted, while RNA-seq was used to quantify transcriptome-wide gene expression, monocyte, macrophage and lymphocyte markers.
Results
Total cellularity of 13% (95% confidence interval of 9–16) and COL-2 3/4C short levels of 0.24 Kg/ml (0.08–0.39) were determined in INTACT. Significant increases in total cellularity to 21% (16–27) and COL-2 3/4C short to 0.49 Kg/ml (0.39–0.59) were observed in ACLT. Compared to ACLT, total cellularity was non-significantly and COL-2 3/4C short was significantly decreased in STEROID to 17% (15–18, p=0.26) and 0.29 Kg/ml (0.23–0.35). Between ACLT and INTACT, 255 genes were differentially expressed and enriched pathways related to cellular immune response and proteolysis. Mononuclear leukocytes were the dominant cell type in cell dense areas. MARCO, SOCS3, CCR1, IL4R and MMP2 expression was significantly associated with COL-2 3/4C short levels.
Conclusions
Early intraarticular immunosuppression mitigated the injury-induced increase of collagen fragments, an outcome better predicted by specific marker expression than histological measures of synovitis.