BackgroundProliferation of oval cells, the bipotent precursor cells of the liver, requires impeded proliferation and loss of hepatocytes as well as a specific micro-environment, provided by adjacent sinusoidal cells of liver. Despite their immense importance for triggering the oval cell response, cells of hepatic sinusoids are rarely investigated. To elucidate the response of sinusoidal liver cells we have employed a choline-deficient, ethionine-supplemented (CDE) diet, a common method for inducing an oval cell response in rodent liver. We have utilised selected expression markers commonly used in the past for phenotypic discrimination of oval cells and sinusoidal cells: cytokeratin, E-cadherin and M2-pyruvate kinase for oval cells; and glial fibrillary acidic protein (GFAP) was used for hepatic stellate cells (HSCs).ResultsCDE diet leads to an activation of all cells of the hepatic sinusoid in the mouse liver. Beside oval cells, also HSCs and Kupffer cells proliferate. The entire fraction of proliferating cells in mouse liver as well as endothelial cells and cholangiocytes express M2-pyruvate kinase. Concomitantly, GFAP, long considered a unique marker of quiescent HSCs was upregulated in activated HSCs and expressed also in cholangiocytes and oval cells.ConclusionsOur results point to an important role of all types of sinusoidal cells in regeneration from CDE induced liver damage and call for utmost caution in using traditional marker for identifying specific cell types. Thus, M2-pyruvate kinase should no longer be used for estimating the oval cell response in mouse liver. CDE diet leads to activation of GFAP positive HSCs in the pericentral zone of liver lobulus. In the periportal zone the detection of GFAP in biliary cells and oval cells, calls other cell types as progenitors of hepatocytes into question under CDE diet conditions.