Skin cancer is one of the most worrying diseases for humans. In Indonesia alone, skin cancer occupies the third position after cervical cancer and breast cancer. Currently, doctors still use the biopsy method to diagnose skin cancer. It is less effective because this method requires the performance of an experienced doctor, takes a long time, and is a painful process. Because of that, we need a way in which skin cancer can be classified using dermoscopic images to help doctors diagnose skin cancer earlier. Researchers proposed to classify skin cancer into seven classes, namely actinic keratoses, basal cell carcinoma, benign keratosis-like lesions, dermatofibroma, melanoma, melanocytic nevus, and vascular lesions. The method used in this study is a convolutional neural network (CNN) with the MobileNet V2 architecture. The dataset used is the HAM10000 dataset, with a total of 10015 images. In this study, a comparison was made between data augmentation, learning rate, epochs, and different amounts of data. Based on the test results, the highest accuracy results were obtained, namely 79%. The best model is implemented into a mobile application.