Disrupted liver regeneration following hepatectomy represents an "undruggable" clinical challenge associated with poor patient outcomes. Yes-associated protein (YAP), a transcriptional co-activator which is repressed by the Hippo pathway, is instrumental in liver regeneration. We have previously described an alternative, Hippo-independent, mechanism of YAP activation mediated by tyrosine-protein phosphatase non-receptor type 11 (SHP2) inhibition. Herein, we examined the effects of YAP activation with a selective SHP1/SHP2 inhibitor, NSC-87877, on liver regeneration in murine partial hepatectomy models. In our studies, NSC-87877 led to accelerated hepatocyte proliferation, improved liver regeneration, and decreased markers of injury following partial hepatectomy. The effects of NSC-87877 were lost in mice with hepatocytespecific Yap/Taz deletion, which demonstrated dependence on these molecules for the enhanced regenerative response. Furthermore, administration of NSC-87877 to murine models of nonalcoholic steatohepatitis was associated with improved survival and decreased markers of injury post-hepatectomy. Evaluation of transcriptomic changes in the context of NSC-87877 administration revealed reduction in fibrotic signaling and augmentation of cell cycle signaling.Cytoprotective changes included downregulation of Nr4a1, an apoptosis inducer. Collectively, the data suggest that SHP2 inhibition induces a pro-proliferative and cytoprotective enhancement of liver regeneration dependent on YAP.