The molecular pathogenic mechanisms of prion diseases are far from clear. Genomic analyses have revealed genetic biomarkers potentially involved in prion neuropathology in naturally scrapie-infected sheep, a good animal model of infectious prionopathies. However, these biomarkers must be validated in independent studies at different stages of the disease. The gene and protein expression profiles and protein distribution of six potential genetic biomarkers (i.e., CAPN6, COL1A2, COL3A1, GALA1, MT2A and MTNR1B) are presented here for both the early and terminal stages of scrapie in five different brain regions. Gene transcription changes were confirmed in the medulla oblongata, and the expression profiles were generally similar in other central nervous system regions. The changes were more substantial in clinical animals compared to preclinical animals. The expression of the CAPN6 protein increased in the spinal cord and cerebellum of the clinical and preclinical brains. The distribution of the GALA1 was identified in glial cells from the cerebellum of scrapie-infected animals, GALA1 protein expression was increased in clinical animals in the majority of regions, and the increase of MT2A was in agreement with previous reports. The downregulation of MTNR1B was especially marked in the Purkinje cells. Finally, although collagen genes were downregulated the protein immunostaining did not reveal significant changes between the scrapie-infected and control animals. In conclusion, this study of gene transcription and protein expression and distribution confirm CAPN6, GALA1, MTNR1B and MT2A as potential targets for further prion disease research.