Single-stranded oligodeoxynucleotide (ssODN) gene targeting may facilitate animal model creation and gene repair therapy. Lipofection of ssODN can introduce point mutations into target genes. However, typical efficiencies in mouse embryonic stem cells (ESC) are o10 À4 , leaving corrections too rare to effectively identify. We developed ESC lines with an integrated mutant neomycin resistance gene (Tyr22Ter). After targeting with ssODN, repaired cells survive selection in G418. Correction efficiencies varied with different lipofection procedures, clonal lines, and ssODN designs, ranging from 1 to 100 corrections per million cells plated. Uptake studies using cell sorting of Cy5-labelled ssODN showed 40% of the corrections concentrated in the best transfected 22% of cells. Four different basepair mismatches were tested and results show that the basespecificity of the mismatch is critical. Dual mismatch ssODN also showed mismatch preferences. These ESC lines may facilitate development of improved ssODN targeting technologies for either animal production or ex vivo gene therapy.