The limiting component in the creation of transgenic crops has been the lack of effective means to introduce foreign genes into elite germplasm . However, the development of novel direct DNA transfer methodology, by-passing limitations imposed by Agrobacterium-host specificity and cell culture constraints, has allowed the engineering of almost all major crops, including formerly recalcitrant cereals, legumes and woody species . The creation of transgenic rice, wheat, maize, barley, oat, soybean, phaseolus, peanut, poplar, spruce, cotton and others, in an efficient and in some cases, variety-independent fashion, is a significant step towards the routine application of recombinant DNA methodology to the improvement of most important agronomic crops . In this review we will focus on key elements and advantages of particle bombardment technology in order to evaluate its impact on the accelerated commercialization of products based on agricultural biotechnology and its utility in studying basic plant developmental processes and function through transgenesis . Fundamental differences between conventional gene transfer methods, utilizing Agrobacterium vectors or protoplast/suspension cultures, and particle bombardment will be discussed in depth .