This paper provides new sufficient conditions on robust asymptotic stability for a class of uncertain discrete-time switched nonlinear systems with time varying delays. The main focus will be dedicated to development of new algebraic criteria to break with classical criteria in terms of linear matrix inequalities (LMIs). Firstly, by contracting a new common Lyapunov-Krasovskii functional as well as resorting to the M-matrix proprieties, a novel robust stability criterion under arbitrary switching signals is derived. Secondly, the obtained result is extended for a class of switched nonlinear systems modeled by a set of differences equations by applying the aggregation techniques, the norm vector notion, and the Borne-Gentina criterion. Furthermore, a generalization for switched nonlinear systems with multiple delays is proposed. The main contribution of this work is that the obtained stability conditions are algebraic and simple. In addition, they provide a solution of the most difficult problem in switched systems, which is stability under arbitrary switching, and enable avoiding searching a common Lyapunov function considered as a very difficult task even for some low-order linear switched systems. Finally, two examples are given, with numerical simulations, to show the merit and effectiveness of the proposed approach.