This article investigates the combined partial demagnetization and static eccentricity fault in an Axial Flux Permanent Magnet (AFPM) Synchronous Generator. The machine is simulated using 3D FEM, while the EMF spectrum is analyzed in order to export the fault related harmonics using the FFT analysis. Firstly, the partial demagnetization fault, without the coexistence of eccentricity, and both the static angular and axis eccentricity faults, without the coexistence of partial demagnetization, are studied. In the case of eccentricity fault, the phase EMF sum spectrum has also been used as a diagnostic mean, because, when only eccentricity fault exists in the generator (either angular or axis) new harmonics do not appear in the EMF spectrum. Secondly the combination of partial demagnetization fault with static axis and static angular eccentricity is investigated and different comparisons are made when the demagnetization and the eccentricity level changes. The investigation revealed that the combination of eccentricity and demagnetization creates new harmonics in the EMF spectrum. The novelty of the article is that these combined faults are studied for the first time in the international literature, and the phase EMF sum spectrum has not been previously used for eccentricity diagnosis in this machine type.