The integument plays essential roles in the structural support, protection, and hydrodynamic capability among fishes. Most research on shark skin has focused on the external epidermal layer, while the larger dermis anchoring the dermal denticles has been mostly ignored. Shark dermis is composed of two layers, the upper stratum laxum and the lower stratum compactum, holding supportive collagen and elastic fibers. There may be morphological and compositional differences in the dermis across various species of sharks that could relate to their different swimming modes and ecologies. The goal of this study was to characterize and describe the dermis among three shark species, Ginglymostoma cirratum, Sphyrna mokarran, and Isurus oxyrinchus, each representing a different swimming mode. Histological characterizations were performed at 16 locations along the body of each shark; variables such as dermal thickness, abundance of collagen and elastic fibers, and fiber size were quantified. Results showed G. cirratum has the thickest skin overall, and the largest fiber size for both collagen and elastic fibers, with overall patterns of increased amounts of collagen fibers and decreased amount of elastic fibers. At the opposite end of the spectrum, I. oxyrinchus showed the thinnest dermis along the flank region, with overall patterns of increased elastic fibers and decreased collagen fibers. These findings may challenge our original assumptions of a rigid body in fast moving sharks and a more flexible body in slower moving sharks and highlight the diversity of the shark integument.