Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Risk issues in metro construction should be discussed at the planning and design stages, along with issues of safety, efficiency of technological solutions and reliability. Problems that arise during the construction of an underground facility lead to an increase in time and cost. In the worst case - to the development of various scenarios of emergency situations. These problems are caused mainly by insufficient attention to geotechnical risk management. The effectiveness of this process is related to the quality of risk identification, understanding of the mechanism for developing a risk situation, and the degree of reliability of the risk assessment results. The article presents the results of identification of some geotechnical risks in metro projects in conjunction with risk-forming factors and consequences of their occurrence. A methodic for geotechnical risks assessing, based on an expert-statistical approach is presented, and theoretical generalization is given for individual components of the methodic. The form of information-analytical archive of risks is given. A veracity criteria for the risk assessment is presented. Further development of the approach will allow more reasonable geotechnical risks assessment for decision-making and selecting a program of measures to exclude and minimize the occurrence of risk situations.
Risk issues in metro construction should be discussed at the planning and design stages, along with issues of safety, efficiency of technological solutions and reliability. Problems that arise during the construction of an underground facility lead to an increase in time and cost. In the worst case - to the development of various scenarios of emergency situations. These problems are caused mainly by insufficient attention to geotechnical risk management. The effectiveness of this process is related to the quality of risk identification, understanding of the mechanism for developing a risk situation, and the degree of reliability of the risk assessment results. The article presents the results of identification of some geotechnical risks in metro projects in conjunction with risk-forming factors and consequences of their occurrence. A methodic for geotechnical risks assessing, based on an expert-statistical approach is presented, and theoretical generalization is given for individual components of the methodic. The form of information-analytical archive of risks is given. A veracity criteria for the risk assessment is presented. Further development of the approach will allow more reasonable geotechnical risks assessment for decision-making and selecting a program of measures to exclude and minimize the occurrence of risk situations.
в данной научной статье рассматривается внедрение инновационных методов анализа больших данных (Big Data) для эффективного управления рисками в нефтегазовом комплексе. Актуальность данной темы обусловлена растущей необходимостью повышения эффективности и безопасности операций в нефтегазовой отрасли, которая сталкивается с множеством рисков, таких как аварии, простои оборудования, колебания цен на энергоносители и геополитическая нестабильность. Целью исследования является разработка комплексного подхода к управлению рисками на основе анализа больших данных, который позволит нефтегазовым компаниям принимать более обоснованные решения и минимизировать потенциальные убытки. В ходе исследования были использованы различные методы, включая сбор и обработку больших объемов структурированных и неструктурированных данных из различных источников, таких как датчики на месторождениях и НПЗ, финансовые отчеты, социальные сети и новостные ленты. Для анализа данных применялись передовые технологии, такие как машинное обучение, глубокое обучение, обработка естественного языка и предиктивная аналитика. Были разработаны специализированные алгоритмы и модели для выявления закономерностей, аномалий и потенциальных угроз в режиме реального времени. Результаты исследования показали, что внедрение методов анализа больших данных позволяет существенно повысить эффективность управления рисками в нефтегазовом комплексе. Например, с помощью предиктивной аналитики удалось снизить количество незапланированных простоев оборудования на 23% и сократить затраты на техническое обслуживание на 18%. Анализ данных о ценах на нефть и газ в сочетании с геополитической информацией позволил оптимизировать торговые стратегии и увеличить прибыль на 12%. Кроме того, выявление потенциальных угроз безопасности, таких как утечки и аварии, с помощью анализа данных с датчиков и камер наблюдения, позволило предотвратить серьезные инциденты и снизить экологические риски. Полученные результаты демонстрируют высокую эффективность применения методов анализа больших данных для управления рисками в нефтегазовом комплексе. Внедрение этих методов позволяет не только минимизировать потенциальные убытки, но и повысить общую эффективность и безопасность операций. Дальнейшие исследования в этой области могут быть направлены на разработку более совершенных алгоритмов и моделей, а также на интеграцию методов анализа больших данных с другими инновационными технологиями, такими как Интернет вещей и блокчейн. this scientific article discusses the introduction of innovative methods of big data analysis (Big Data) for effective risk management in the oil and gas industry. The relevance of this topic is due to the growing need to improve the efficiency and safety of operations in the oil and gas industry, which faces many risks such as accidents, equipment downtime, fluctuations in energy prices and geopolitical instability. The aim of the study is to develop an integrated approach to risk management based on big data analysis, which will allow oil and gas companies to make more informed decisions and minimize potential losses. Various methods were used during the research, including the collection and processing of large amounts of structured and unstructured data from various sources, such as sensors at fields and refineries, financial reports, social networks and news feeds. Advanced technologies such as machine learning, deep learning, natural language processing and predictive analytics were used to analyze the data. Specialized algorithms and models have been developed to identify patterns, anomalies and potential threats in real time. The results of the study showed that the introduction of big data analysis methods can significantly improve the effectiveness of risk management in the oil and gas industry. For example, predictive analytics has reduced the number of unplanned equipment downtime by 23% and reduced maintenance costs by 18%. The analysis of oil and gas price data in combination with geopolitical information allowed us to optimize trading strategies and increase profits by 12%. In addition, the identification of potential security threats, such as leaks and accidents, through the analysis of data from sensors and surveillance cameras, has prevented serious incidents and reduced environmental risks. The results obtained demonstrate the high efficiency of using big data analysis methods for risk management in the oil and gas industry. The implementation of these methods allows not only to minimize potential losses, but also to increase the overall efficiency and safety of operations. Further research in this area may be aimed at developing more advanced algorithms and models, as well as integrating big data analysis methods with other innovative technologies such as the Internet of Things and blockchain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.