2010
DOI: 10.1088/1751-8113/43/22/222002
|View full text |Cite
|
Sign up to set email alerts
|

General scaling laws of chaotic escape in dissipative multistable systems subjected to autoresonant excitations

Abstract: A theory concerning the emergence and control of chaotic escape from a potential well by means of autoresonant excitations is presented in the context of generic, dissipative, and multistable systems. Universal scaling laws relating both the onset and lifetime of transient chaos with the parameters of autoresonant excitations are derived theoretically using vibrational mechanics, Melnikov analysis, and energy-based autoresonance theory. Numerical experiments show that these scaling laws are robust against both… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 28 publications
0
0
0
Order By: Relevance