We develop a new methodology to contract tensor networks within the corner transfer matrix renormalization group approach for a wide range of two-dimensional lattice geometries. We discuss contraction algorithms on the example of triangular, kagome, honeycomb, square-octagon, star, ruby, square-hexagon-dodecahedron, and dice lattices. As benchmark tests, we apply the developed method to the classical Ising model on different lattices and observe a remarkable agreement of the results with the available from the literature. The approach also shows the necessary potential to be applied to various quantum lattice models in a combination with the wave-function variational optimization schemes.
Published by the American Physical Society
2024