Wireless-power-transfer-system (WPTS) based wireless electric vehicles (WEVs), classified into roadway powered electric vehicles (RPEVs) and stationary charging electric vehicles (SCEVs), are in the spotlight as future mainstream transportations. RPEVs are free from serious battery problems such as large, heavy, and expensive battery packs and long charging time because they get power directly from the road while moving. The power transfer capacity, efficiency, lateral tolerance, EMF, air-gap, size, weight, and cost of the WPTSs have been improved by virtues of innovative semiconductor switches, better coil designs, roadway construction techniques, and higher operating frequency. Recent advances in WPTSs for RPEVs are summarized in this review paper. The fifth-(5G) and sixth-generation (6G) on-line electric vehicles (OLEVs), which reduce infrastructure cost for commercialization, and the interoperability between RPEVs and SCEVs are addressed in detail in this paper. Major milestones of the developments of other RPEVs are also summarized. The rest of this paper deals with a few important technical issues such as coil structures, power supply schemes, and segmentation switching techniques of a lumped inductive power transfer system (IPTS) for RPEVs.
Index Terms-Wireless electric vehicle (WEV), roadway powered electric vehicle (RPEV)Manuscript