2021
DOI: 10.3390/metabo11060336
|View full text |Cite
|
Sign up to set email alerts
|

General Unified Microbiome Profiling Pipeline (GUMPP) for Large Scale, Streamlined and Reproducible Analysis of Bacterial 16S rRNA Data to Predicted Microbial Metagenomes, Enzymatic Reactions and Metabolic Pathways

Abstract: General Unified Microbiome Profiling Pipeline (GUMPP) was developed for large scale, streamlined and reproducible analysis of bacterial 16S rRNA data and prediction of microbial metagenomes, enzymatic reactions and metabolic pathways from amplicon data. GUMPP workflow introduces reproducible data analyses at each of the three levels of resolution (genus; operational taxonomic units (OTUs); amplicon sequence variants (ASVs)). The ability to support reproducible analyses enables production of datasets that ultim… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 73 publications
(129 reference statements)
0
1
0
Order By: Relevance
“…Two predominant transformation methods applied to deal with uneven library sizes in sequencing microbiome data are relative abundance (Statnikov et al, 2013;Ning and Beiko, 2015;Wu et al, 2018Wu et al, , 2021Bogart et al, 2019;Gupta et al, 2019;Lo and Marculescu, 2019;Vangay et al, 2019;Yachida et al, 2019;Fernández-Edreira et al, 2021;Lloréns-Rico et al, 2021), and rarefaction (Stämmler et al, 2016;Weiss et al, 2017;Baksi et al, 2018), used to solve the problem of different sequencing depths (Murovec et al, 2021).…”
Section: Normalization Methodsmentioning
confidence: 99%
“…Two predominant transformation methods applied to deal with uneven library sizes in sequencing microbiome data are relative abundance (Statnikov et al, 2013;Ning and Beiko, 2015;Wu et al, 2018Wu et al, , 2021Bogart et al, 2019;Gupta et al, 2019;Lo and Marculescu, 2019;Vangay et al, 2019;Yachida et al, 2019;Fernández-Edreira et al, 2021;Lloréns-Rico et al, 2021), and rarefaction (Stämmler et al, 2016;Weiss et al, 2017;Baksi et al, 2018), used to solve the problem of different sequencing depths (Murovec et al, 2021).…”
Section: Normalization Methodsmentioning
confidence: 99%