Cloud-based design for configurations can be referred to as a service-oriented networked design for configurations model. However, cloud-based models also pose challenges such as reliability, availability, capability, ability, adaptability of resources, and services across spatial boundaries. Multi-scale design can presumably stimulate greater intelligence in cloud-based models. Using the concepts of the fuzzy holon and the fuzzy attractor, this paper proposes the fuzzy holonic approach to address multi-scale design for configurations. A fuzzy design holon is defined through two basic holons: fuzzy function holon and fuzzy solution holon. A fuzzy attractor is defined as a fuzzy function holon or fuzzy function solution toward which a design tends to evolve. The proposed fuzzy holon model is driven by two conflicting drives: (a) completeness of fuzzy function holons and fuzzy solution holons, and (b) discrimination of fuzzy function holons and fuzzy solution holons. Through simulations, four possible states of behavior of fuzzy holon design are found: (a) the impossibility state characterized by the impossibility of fuzzy holon creation; (b) the creation and destruction state sometimes characterized by the creation of fuzzy holons and sometimes the destruction of fuzzy holons, (c) the development state characterized by a natural creation and development of fuzzy holons and (d) the failure state characterized by the interruption of the development of the fuzzy design holon and the destruction of already created fuzzy design holon. The model explains that design is not an orderly and well behaved phenomenon. It shows that fuzzy holon design is a discontinuous phenomenon.Keywords Intelligent design · Cloud-based design and manufacturing · Cloud-based design for configuration · Multi scale design · Fuzzy holon design