2017
DOI: 10.1002/eqe.2921
|View full text |Cite
|
Sign up to set email alerts
|

Generalised formulation of composite filters and their application to earthquake engineering test systems

Abstract: Summary This paper addresses the problem of generating unmeasured kinetic data—and/or providing improvements in existing data—for the enhancement of performance characteristics of earthquake engineering test systems, such as shaking tables, reaction walls and other custom‐made test rigs. The approach relies upon the use of composite filters (CF), a method of data fusion that was originally conceived via transfer function formulation. The current work generalises the CF concept and extends its formulation into … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 13 publications
0
1
0
Order By: Relevance
“…Enokida and Stoten (Stoten, 2017a) compared these schemes via test, with a prime focus on the effect of pure time delays. Later, Stoten (2017b) carried out a unification of two methods for controlling dynamically substructured systems. However, the frequency response characteristic of the shaking table system will change with change of payload, and the applicability of the aforementioned methods is limited without consideration being given to the specimen and variation of the payload.…”
Section: Introductionmentioning
confidence: 99%
“…Enokida and Stoten (Stoten, 2017a) compared these schemes via test, with a prime focus on the effect of pure time delays. Later, Stoten (2017b) carried out a unification of two methods for controlling dynamically substructured systems. However, the frequency response characteristic of the shaking table system will change with change of payload, and the applicability of the aforementioned methods is limited without consideration being given to the specimen and variation of the payload.…”
Section: Introductionmentioning
confidence: 99%