Diffusion probabilistic models excel at sampling new images from learned distributions. Originally motivated by drift-diffusion concepts from physics, they apply image perturbations such as noise and blur in a forward process that results in a tractable probability distribution. A corresponding learned reverse process generates images and can be conditioned on side information, which leads to a wide variety of practical applications. Most of the research focus currently lies on practice-oriented extensions. In contrast, the theoretical background remains largely unexplored, in particular the relations to drift-diffusion. In order to shed light on these connections to classical image filtering, we propose a generalised scale-space theory for diffusion probabilistic models. Moreover, we show conceptual and empirical connections to diffusion and osmosis filters.