2023
DOI: 10.20944/preprints202306.0123.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Generalizability of a Random Forest-based model of maize lodging built with satellite image data and its application to monitoring and evaluating maize lodging risks

Abstract: Lodging is a common problem in maize production that seriously impacts yield, quality, and the capacity for mechanical harvesting. Evaluation of site-specific lodging risks requires establishment of a method for multi-year monitoring. In this study, spectral images collected by the Sentinel-2 satellite were processed to obtain three types of data: gray-level co-occurrence matrix texture (GLCM), vegetation indices (VIs), and spectral reflectance (SR). Lodging classification models were then established with Ran… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?