2021
DOI: 10.48550/arxiv.2112.07003
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Generalizations of Loday's assembly maps for Lawvere's algebraic theories

Abstract: Loday's assembly maps approximate the K-theory of group rings by the K-theory of the coefficient ring and the corresponding homology of the group. We present a generalization that places both ingredients on the same footing. Building on Elmendorf-Mandell's multiplicativity results and our earlier work, we show that the K-theory of Lawvere theories is lax monoidal. This result makes it possible to present our theory in a user-friendly way without using higher categorical language. It also allows us to extend th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 29 publications
(47 reference statements)
0
1
0
Order By: Relevance
“…Nonetheless, the specific setting of Lawvere theories balances rigidity and flexibility in a way that suggests it to be particularly amenable to homological stability questions as well. Additional motivation for the algebraic K-theory of Lawvere theories, in the form of multiplicative matters and applications to assembly maps, is discussed in [5].…”
Section: Introductionmentioning
confidence: 99%
“…Nonetheless, the specific setting of Lawvere theories balances rigidity and flexibility in a way that suggests it to be particularly amenable to homological stability questions as well. Additional motivation for the algebraic K-theory of Lawvere theories, in the form of multiplicative matters and applications to assembly maps, is discussed in [5].…”
Section: Introductionmentioning
confidence: 99%