2015
DOI: 10.1016/j.proeng.2015.11.105
|View full text |Cite
|
Sign up to set email alerts
|

Generalized Additive Models for Estimating Motorcycle Collisions on Collector Roads

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
3
0
3

Year Published

2017
2017
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 6 publications
0
3
0
3
Order By: Relevance
“…Although most of the crash prediction models adopted Linear Regression [15,16], recent studies are found to prefer applying Generalize Additive Model (GAM) to predict crash frequencies [17][18][19][20][21][22]. However, very few studies were found to apply Random Forest (RT) to predict crash occurrences on highways [23,24].…”
Section: State-of-the-art Approachesmentioning
confidence: 99%
“…Although most of the crash prediction models adopted Linear Regression [15,16], recent studies are found to prefer applying Generalize Additive Model (GAM) to predict crash frequencies [17][18][19][20][21][22]. However, very few studies were found to apply Random Forest (RT) to predict crash occurrences on highways [23,24].…”
Section: State-of-the-art Approachesmentioning
confidence: 99%
“…Sebesar 80% jumlah kecelakaan lalu lintas di Kota Semarang didominasi oleh kendaraan pribadi [6]. Jenis kendaraan yang mengalami kecelakaan lalu lintas terbanyak adalah sepeda motor, hal ini dikarenakan sepeda motor memiliki risiko kecelakaan lalu lintas yang tinggi [7]- [13]. Badan Pusat Statistik Provinsi Jawa Tengah mencatat jumlah kecelakaan di Kota Semarang pada tahun 2019 ada sebanyak 1.365 jumlah kejadian dengan jumlah korban meninggal 193 korban, luka berat 2 korban, dan luka ringan 1.434 korban, bahkan kerugian materil mencapai Rp 1.306.480.000.000 [5].…”
Section: Pendahuluanunclassified
“…A GAM can be considered as an extension of a GLM. GAMs have been used for estimating motorcycle collisions (Machsus et al., 2015) and for accident frequency analysis (Xie and Zhang, 2008).…”
Section: Approaches Commonly Used For Modelling Rtcs and Related Phenomenamentioning
confidence: 99%