In this study, a multi-resource agent bottleneck generalized assignment problem (MRBGAP) is addressed. In the bottleneck generalized assignment problem (BGAP), more than one job can be assigned to an agent, and the objective function is to minimize the maximum load over all agents. In this problem, multiple resources are considered and the capacity of the agents is dependent on these resources and it has minimum two indices. In addition, agent qualifications are taken into account. In other words, not every job can be assignable to every agent. The problem is defined by considering the problem of assigning jobs to employees in a firm. BGAP has been shown to be NP- hard. Consequently, a multi-start iterated tabu search (MITS) algorithm has been proposed for the solution of large-scale problems. The results of the proposed algorithm are compared by the results of the tabu search (TS) algorithm and mixed integer linear programming (MILP) model.