This article is investigating from one of best control technique known as periodically intermittent discrete observation control (PIDOC), the problem of global synchronization based on a relay configuration of three novel hyperchaotic oscillators of three-components (NHO) operating at high frequency. Contrary to traditional periodically intermittent control based on continuous-time state observations, PIDOC used here, chooses discrete-time state observations in work time during a control period. Our analysis has been limited to a range of parameters for which the NHO-type oscillator exhibits bursting oscillations. The global conditions of stability for non-adaptive and adaptive cases have been proven analytically. To the best of our knowledge and in the literature of the relay coupling system, no work has been carried out concerning the study of the stability of adaptive synchronization case. The Synchronization of the system is analysed in terms of its control gain by using time series. The numerical results show that there is global synchronization between the three relay coupled NHO-type oscillators for both non-adaptive and adaptive synchronizations. Moreover, PSpice based simulations of the analog electronic circuit for the non-adaptive case are in good accordance with both theoretical and numerical results.