The description of quantum states by probability distributions of classical-like random variables associated with observables is presented. An invertible map of the wave functions and density matrices onto the probability distributions is constructed. The relation of the probability distributions to quasidistributions like the Wigner function is discussed. The interference phenomenon and superposition principle of pure quantum states are given in the form of nonlinear addition of the probabilities identified with the quantum states. The probability given by Born’s rule is expressed as a function of the probabilities describing the system states. The suggested probability representation of quantum mechanics is presented using examples of harmonic oscillators and qubits.