Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this article an optimal control scheme is proposed to solve robust control problem for matched and unmatched system. In the proposed optimal approach the value functions are designed such that the obtained optimal control law guarantees asymptotic stability of the uncertain nonlinear system. Since the proposed robust optimal control problem is not straightforward to solve, an off‐policy reinforcement‐learning algorithm based on neural networks approximation is developed to obtain robust optimal control law iteratively. The robust control law for matched uncertain systems can be achieved via proposed off‐policy learning algorithm without requiring exact knowledge of system's dynamics. The advantages of the proposed robust optimal controller are verified by comparative simulations on an uncertain model of a car suspension system and a mathematical nonlinear model.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.