Abstract:We derive the universal terms of entanglement entropy for 6d CFTs by applying the holographic and the field theoretical approaches, respectively. Our formulas are conformal invariant and agree with the results of [37,38]. Remarkably, we find that the holographic and the field theoretical results match exactly for the C 2 and Ck 2 terms, where C and k denote the Weyl tensor and the extrinsic curvature, respectively. As for the k 4 terms, we meet the splitting problem of the conical metrics. The splitting problem in the bulk can be fixed by equations of motion. As for the splitting on the boundary, we assume the general forms and find that there indeed exists suitable splitting which can make the holographic and the field theoretical k 4 terms match. Since we have much more equations than the free parameters, the match for k 4 terms is non-trivial.