2015
DOI: 10.1142/s1793604715300017
|View full text |Cite
|
Sign up to set email alerts
|

Generalized Hamiltonian for a graphene subjected to arbitrary in-plane strains

Abstract: The interplay between the linear elastic deformation up to 20% and the unique electronic properties of graphene nanostructures offers an attractive prospect to manipulate their properties by strain. Here we review the recent progress on the electronic response of graphene to the in-plane strains, including the strain-modulated electronic structure and the strain-modulated spin, valley and superconducting transports. A generalized Hamiltonian for a graphene was constructed subjected to arbitrary in-plane strain… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
3

Year Published

2016
2016
2019
2019

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 162 publications
0
4
0
3
Order By: Relevance
“…The obtained effective Hamiltonians near the Dirac points ( D x , D y ) in the three cases can be rewritten as the general form of the pseudospin-1 Dirac-Weyl fermions: (see Supplementary Note 2 ) with the anisotropic group velocities v x and v y , a new wave vector p = ( p x , p y , 0) and the pseudospin vectors S ± = ( S x , ±, S y , ±, S z , ± ), which satisfies with the Levi-Civita symbol ε mnl . The expressions of these quantities are given in Supplementary Table 1 , where p = Aq with A, as a corresponding deformation operator similar to the manipulation of the in-plain strain 78 . Recently, searching for flat band has been particularly interesting, because the dispersionless state in the presence of Coulomb interactions can induce correlated quantum states, including ferromagnetism, superconductivity and fractional quantum Hall effect 79 80 81 82 .…”
Section: Resultsmentioning
confidence: 99%
“…The obtained effective Hamiltonians near the Dirac points ( D x , D y ) in the three cases can be rewritten as the general form of the pseudospin-1 Dirac-Weyl fermions: (see Supplementary Note 2 ) with the anisotropic group velocities v x and v y , a new wave vector p = ( p x , p y , 0) and the pseudospin vectors S ± = ( S x , ±, S y , ±, S z , ± ), which satisfies with the Levi-Civita symbol ε mnl . The expressions of these quantities are given in Supplementary Table 1 , where p = Aq with A, as a corresponding deformation operator similar to the manipulation of the in-plain strain 78 . Recently, searching for flat band has been particularly interesting, because the dispersionless state in the presence of Coulomb interactions can induce correlated quantum states, including ferromagnetism, superconductivity and fractional quantum Hall effect 79 80 81 82 .…”
Section: Resultsmentioning
confidence: 99%
“…Наибольшее расхождение (как по величине ζ a , 5 В отсутствие деформации сходства и различия результатов НЭП и M-модели обсуждаются в работе [20]. Отметим, что в рамках НЭП нетрудно в принципе учесть любой вид плоской деформации листа графена, вводя в расчет соответствующий закон дисперсии элек-тронов [22,23]. В Приложении (пункт 3) показано, что одноосная деформация по порядку величины дает то же значение относительного изменения заряда адатома ζ a , что и гидростатическая деформация.…”
Section: влияние деформацииunclassified
“…(ω). Так как для гидростатической деформации ρ(ω) = (1 + 2ε)ρ(ω), λ < 0 и |λ| ∼ 1 [23], ν ≈ 0.14 (графит), приходим к выводу, что одноосная деформация по порядку величины дает то же значение относительного изменения заряда адатома ζ a , что и гидростатическая деформация.…”
Section: заключениEunclassified
See 1 more Smart Citation
“…Given the unique mechanical properties of graphene, in particular its striking interval of elastic response, 5,6 the strain engineering has been an alternative to explore the strain-induced modifications of the electronic properties of graphene. [7][8][9][10] Although a theoretical prediction of strain-induced opening of a band gap, [11][12][13][14] the most interesting strain-induced effect is the experimental observation of Landau levels signatures to zero magnetic field. 15,16 As earlier predicted for carbon nanotubes, 17 and subsequently extended to graphene, [18][19][20] the lattice deformation fields can be interpreted in the form of pseudomagnetic fields.…”
Section: Introductionmentioning
confidence: 99%