We introduce a weak concept of Morita equivalence, in the birational context, for Poisson modules on complex normal Poisson projective varieties. We show that Poisson modules, on projective varieties with mild singularities, are either rationally Morita equivalent to a flat partial homomorphic sheaf, or a sheaf with a meromorphic flat connection or a co-Higgs sheaf. As an application, we study the geometry of meromorphic rank two sl 2 -Poisson modules which can be interpreted as a Poisson analogous to transversally projective structures for codimension one holomorphic foliations. Moreover, we describe the geometry of the symplectic foliation induced by the Poisson connection on the projectivization of the Poisson module.