The paper describes various approaches to the invertibility of Toeplitz plus Hankel operators in Hardy and l p -spaces, integral and difference Wiener-Hopf plus Hankel operators and generalized Toeplitz plus Hankel operators. Special attention is paid to a newly developed method, which allows to establish necessary, sufficient and also necessary and sufficient conditions of invertibility, one-sided and generalized invertibility for wide classes of operators and derive efficient formulas for the corresponding inverses. The work also contains a number of problems whose solution would be of interest in both theoretical and applied contexts.