The purpose of this paper is to enhance the conventional Komar integral to asymptotically anti-de Sitter (AdS) black holes. In order to do so, we first obtain a potential that is the linear combination of the usual Komar potential with two third-order derivative terms generated by the action of the d'Alembertian operator and the exterior derivative upon a Killing vector. Then this higher-order corrected potential is extended to the Einstein gravity with a negative cosmological constant, yielding the potential that is the linear combination of the usual Komar one with it acted on by the d'Alembertian. It is demonstrated that the surface integral of the improved Komar potential can serve as a formula for conserved charges of asymptotically AdS spacetimes. Finally, to illustrate such a formula, we make use of it to compute the mass and the angular momentum of Schwarzschild-AdS black holes, regular AdS black holes, asymptotically AdS Kerr-Sen black holes, Kerr-NUT-AdS black holes, and Kerr-AdS black holes in arbitrary dimensions. The results are in agreement with the ones in the literature.