Considering that the movements of complex system entities take place on continuous, but non-differentiable, curves, concepts, like non-differentiable entropy, informational non-differentiable entropy and informational non-differentiable energy, are introduced.First of all, the dynamics equations of the complex system entities (Schrödinger-type or fractal hydrodynamic-type) are obtained. The last one gives a specific fractal potential, which generates uncertainty relations through non-differentiable entropy. Next, the correlation between informational non-differentiable entropy and informational non-differentiable energy implies specific uncertainty relations through a maximization principle of the informational non-differentiable entropy and for a constant value of the informational non-differentiable energy. Finally, for a harmonic oscillator, the constant value of the informational non-differentiable energy is equivalent to a quantification condition.
Keywords:non-differentiable entropy; informational non-differentiable entropy; informational non-differentiable energy; uncertainty relations Entropy 2014, 16 6043