2011
DOI: 10.48550/arxiv.1111.2567
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Generalized Lucas Numbers and Relations with Generalized Fibonacci Numbers

Abstract: In this paper, we present a new generalization of the Lucas numbers by matrix representation using Genaralized Lucas Polynomials. We give some properties of this new generalization and some relations between the generalized order-k Lucas numbers and generalized order-k Fibonacci numbers. In addition, we obtain Binet formula and combinatorial representation for generalized order-k Lucas numbers by using properties of generalized Fibonacci numbers.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 2 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?