We show how a large family of master equations, describing quantum Brownian motion of a harmonic oscillator with translationally invariant damping, can be derived within a phenomenological approach, based on the assumption that an environment can be simulated by two classical stochastic forces. This family is determined by three time-dependent correlation functions (besides the frequency and damping coefficients), and it includes as special cases the known master equations, whose dissipative part is bilinear with respect to the operators of coordinate and momentum.