Single-photons are key elements of many future quantum technologies, be it for the realisation of large-scale quantum communication networks 1 for quantum simulation of chemical and physical processes 2 or for connecting quantum memories in a quantum computer 3 . Scaling quantum technologies will thus require efficient, on-demand, sources of highly indistinguishable single-photons 4 . Semiconductor quantum dots inserted in photonic structures are ultrabright single photon sources [5][6][7] , but the photon indistinguishability is limited by charge noise induced by nearby surfaces 8 . The current state of the art for indistinguishability are parametric down conversion single-photon sources, but they intrinsically generate multiphoton events and hence must be operated at very low brightness to maintain high single photon purity 9,10 . To date, no technology has proven to be capable of providing a source that simultaneously generates near-unity indistinguishability and pure single-photons with high brightness. Here, we report on such devices made of quantum dots in electrically controlled cavity structures. We demonstrate on-demand, bright and ultra-pure single photon generation. Application of an electrical bias on deterministically fabricated devices 11,12 is shown to fully cancel charge noise effects. Under resonant excitation, an indistinguishability of 0.9956±0.0045 is evidenced with a g (2) (0)=0.0028±0.0012. The photon extraction of 65% and measured brightness of 0.154±0.015 make this source 20 times brighter than any source of equal quality. This new generation of sources open the way to a new level of complexity and scalability in optical quantum manipulation.