Background: Coupling term in coupled thermoelasticity generally is small for all materials and can be neglected. Neglecting the coupling term simplifies the analysis without noticeable effect on the frequency spectrum. In generalized theory of thermoelasticity, effect of increasing the relaxation time is to lower the speeds of the thermal modes. Since the effect of anisotropy of the material is quite pronounced on waves propagating in different directions along the plate. Thus, it is significant to consider the anisotropy of the material in order to accurately model the propagation characteristics. Methods: A theoretical framework is developed for displacements and temperature expression of plane harmonic waves in generalized theory of thermoelasticity using three dimensional thermoelasticity with a thermal relaxation time. Subsequently, the Lamb waves in a single lamina where a compact closed-form dispersion relation is derived by separating thermoelastic symmetric and anti-symmetrical modes using trigonometric functions through the lamina thickness. Results: Propagation of guided thermoelastic waves in a homogeneous, orthotropic, thermally conducting plate is investigated within the framework of the generalized theory of thermoelasticity. The results show that both elastic and thermal modes are attenuated, the thermal modes exhibit much larger attenuation than the elastic modes. The attenuation of the former is quite small. Results obtained are extended to a general laminate with an arbitrary layup. On employing boundary conditions on both mid-plane and top surfaces is developed to decouple the wave modes for symmetric and anti-symmetrical modes for laminates. Conclusions: Propagation of guided thermoelastic waves in a homogeneous, orthotropic, thermally conducting plate is investigated employing generalized theory of thermoelasticity which includes a thermal relaxation time in the heat conduction equation in order to model the finite speed of the thermal wave. Both elastic and thermal modes are attenuated; the thermal modes exhibit much larger attenuation than the elastic modes. The effect of increasing the relaxation time is to lower the speeds of the thermal modes. The effect of anisotropy of the material is quite pronounced on waves propagating in different directions. Thus, it is important to consider the anisotropy of the material in order to accurately model the propagation characteristics.