Abstrak -Peramalan kunjungan wisatawan mancanegara (wisman) sangat penting bagi pemerintah dan industri, karena peramalan menjadi dasar dalam perencanaan kebijakan yang efektif. Penelitian ini menggunakan Generalized Regression Neural Network (GRNN) untuk meramalkan kunjungan wisman menurut 19 pintu masuk utama dan kebangsaan, seperti: Ngurah Rai, Soekarno-Hatta, Batam, Tanjung Uban, Polonia, Juanda, Husein Sastranegara, Tanjung Balai Karimun, Tanjung Pinang, Tanjung Priok, Adi Sucipto, Minangkabau, Entikong, Adi Sumarmo, Sultan Syarif Kasim II, Sepinggan, Sam Ratulangi, Bandara Internasional Lombok, dan Makassar. GRNN memiliki kelebihan tidak memerlukan estimasi jumlah bobot jaringan untuk mendapatkan arsitektur jaringan optimal, sehingga tidak memerlukan pengaturan parameter bebas. Uji coba penelitian dilakukan dengan menggunakan spread dari 0,1 sampai 1,0. Hasil uji coba menunjukkan bahwa kinerja Peramalan terbaik dengan menggunakan spread 0,1 baik untuk data latih maupun data uji.Kata kunci -Peramalan, Kunjungan wisman, Generalized regression neural network.Abstract -Forecasting tourism demand are very important for the government and industry, as forecasting the basis for effective policy planning. This research is using Generalized Regression Neural Network (GRNN) to forecasting tourism demand according 19 the main entrance and nationality, such as: Ngurah Rai, SoekarnoHatta, Batam, Tanjung Uban, Polonia, Juanda, Husein Sastranegara, Tanjung Balai Karimun, Tanjung Pinang, Tanjung Priok, Adi Sucipto, Minangkabau, Entikong, Adi Sumarmo, Sultan Syarif Kasim II, Sepinggan, Sam Ratulangi International Airport Lombok, and Makassar. GRNN has advantages not require the estimated number of network weights to get optimal network architecture, so it does not require setting parameters. Research trial conducted using a spread of 0.1 to 1.0. The experimental results show that the best forecasting performance with spread 0,1 for training and testing data.