Reliable entangling gates for qubits encoded in single-photon states represent a major challenge on the road to scalable quantum computing architectures based on linear optics. In this work, we present two approaches to develop high-fidelity, near-deterministic controlled-sign-shift gates based on the techniques of quantum gate teleportation. On the one hand, teleportation in a discrete-variable setting, i.e., for qubits, offers unit-fidelity operations but suffers from low success probabilities. Here, we apply recent results on advanced linear optical Bell measurements to reach a near-deterministic regime. On the other hand, in the setting of continuous variables, associated with coherent states, squeezing, and, typically, Gaussian states, teleportation can be performed in a deterministic fashion, but the finite amount of squeezing implies an inevitable deformation of a teleported single-mode state. Using a new generalized form of the nonlinear-sign-shift gate for gate teleportation, we are able to achieve fidelities of the resulting csign gate above 90%. A special focus is also put on a comparison of the two approaches, not only with respect to fidelity and success probability, but also in terms of resource consumption.