Antennas are essential devices to build everything connected in the era of information. However, the quality of communications would be degraded with the presence of raindrops on the antenna surface. Additional antiwater radomes may generate radiation loss and dispersive impedance mismatch over a broad frequency range, which is not acceptable for next-generation communication systems integrating multiple bands. Here, we report the first experimental demonstration of selfhydrophobic antennas that cover the bands of 1.7 GHz, 3.5 GHz, and 8.5 GHz through a laser-directwriting treatment. Experimental results show that the return loss, radiation pattern, and efficiency of self-superhydrophobic antennas can be maintained in the mimicked rainy weather. Furthermore, writing hydrophobic nanostructures on both dielectrics and metals is compatible with commercial printed circuitry techniques widely used in industries. Our technique will augment the laser fabrication technology for specialized electromagnetic devices and serve as a powerful and generalized solution for all-weather wireless communication systems.