2018
DOI: 10.7566/jpsj.87.114007
|View full text |Cite
|
Sign up to set email alerts
|

Generalized Wick Theorems in Conformal Field Theory and the Borcherds Identity

Abstract: As a counterpart of the well-known generalized Wick theorem by Bais et. al. in 1988 for interacting fields in two dimensional conformal field theory, we present a new contour integral formula for the operator product expansion of a normally ordered operator and a single operator on its right hand. Quite similar to the original Wick theorem for the opposite order operator product, it expresses the contraction i. e. the singular part of the operator product expansion as a contour integral of only two terms, each… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
3
0
2

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(5 citation statements)
references
References 13 publications
0
3
0
2
Order By: Relevance
“…He also pointed out its equivalence to the generalized Wick theorem (1). A proof of this equivalence is available in [8]…”
Section: Non-commutative Wick Formula By Kacmentioning
confidence: 93%
See 2 more Smart Citations
“…He also pointed out its equivalence to the generalized Wick theorem (1). A proof of this equivalence is available in [8]…”
Section: Non-commutative Wick Formula By Kacmentioning
confidence: 93%
“…As far as the author knows, no one had correctly answered this question yet. So we tried to answer it and found the following expression [8].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Насколько известно автору, пока никто не дал корректного ответа на этот вопрос. Мы попытались найти этот ответ и получили следующее выражение [3]:…”
Section: т такагиunclassified
“…В разделе 3 мы приводим примеры вычисления операторных разложений путем использования обощенной теоремы Вика, содержащей фермионные поля. В целях упрощения изложения почти все строгие математические рассуждения опущены, интересующийся читатель может найти их в работе [3].…”
Section: т такагиunclassified