2023
DOI: 10.1609/aaai.v37i11.26548
|View full text |Cite
|
Sign up to set email alerts
|

Generalizing Math Word Problem Solvers via Solution Diversification

Abstract: Current math word problem (MWP) solvers are usually Seq2Seq models trained by the (one-problem; one-solution) pairs, each of which is made of a problem description and a solution showing reasoning flow to get the correct answer. However, one MWP problem naturally has multiple solution equations. The training of an MWP solver with (one-problem; one-solution) pairs excludes other correct solutions, and thus limits the generalizability of the MWP solver. One feasible solution to this limitation is to augment mul… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 32 publications
0
0
0
Order By: Relevance