Standard objective parameters such as MTF, NPS, NEQ and DQE do not reflect complete system performance, because they do not account for geometric unsharpness due to finite focal spot size and scatter due to the patient. The inclusion of these factors led to the generalization of the objective quantities, termed GMTF, GNNPS, GNEQ and GDQE defined at the object plane. In this study, a commercial x-ray image intensifier (II) is evaluated under this generalized approach and compared with a high-resolution, ROI microangiographic system previously developed and evaluated by our group. The study was performed using clinically relevant spectra and simulated conditions for neurovascular angiography specific for each system. A head-equivalent phantom was used, and images were acquired from 60 to 100 kVp. A source to image distance of 100 cm (75 cm for the microangiographic system) and a focal spot of 0.6 mm were used. Effects of varying the irradiation field-size, the air-gaps, and the magnifications (1.1 to 1.3) were compared. A detailed comparison of all of the generalized parameters is presented for the two systems. The detector MTF for the microangiographic system is in general better than that for the II system. For the total x-ray imaging system, the GMTF and GDQE for the II are better at low spatial frequencies, whereas the microangiographic system performs substantially better at higher spatial frequencies. This generalized approach can be used to more realistically evaluate and compare total system performance leading to improved system designs tailored to the imaging task.