2008
DOI: 10.1016/j.jnt.2007.07.008
|View full text |Cite
|
Sign up to set email alerts
|

Générateurs de l'anneau des entiers d'une extension cyclotomique

Abstract: Soit p un nombre premier impair, soit q = p m , où m est un entier positif ; notons ζ q une racine primitive q-ième de l'unité et O q l'anneau des entiers de Q(ζ q ). Dans [I. Gaál, L. Robertson, Power integral bases in prime-power cyclotomic fields, J. Number Theory 120 (2006) 372-384] I. Gaál et L. Robertson montrent que si (h + q , p(p − 1)/2) = 1, où h + q est l'ordre du groupe des classes de Q(ζ q + ζ q ), alors si α ∈ O q engendre O q (autrement dit Z[α] = O q ) soit α est un conjugué d'un translaté par … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2010
2010
2017
2017

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 10 publications
0
3
0
Order By: Relevance
“…Actually, the hypothesis on h + q is not necessary. Indeed, in [11], we proved the following result.…”
Section: Introductionmentioning
confidence: 62%
See 1 more Smart Citation
“…Actually, the hypothesis on h + q is not necessary. Indeed, in [11], we proved the following result.…”
Section: Introductionmentioning
confidence: 62%
“…Hence we have generalized the main result of [11] in the case of a cyclotomic field generated by a primitive nth root of unity such that (n, 6) = 1.…”
Section: Generators Of O L and Distinct Subfields Of Lmentioning
confidence: 80%
“…When a power basis exists, Gÿory has shown in [11] that up to integer translation there are only finitely many elements that generate a power basis for the ring of integers. As for cyclotomic fields, there is a conjecture by Bremner on the generators for the ring of integers of Q(ζ p ) with p a prime, and a lot of study has been made towards the resolution and the generalization of the conjecture (see 1, 7, [16][17][18][19].…”
Section: Introductionmentioning
confidence: 99%