In this paper we analytically estimate the magnetic field scale of planets with physical core conditions similar to that of Earth from a statistical point of view. We evaluate the magnetic field on the basis of the physical parameters of the center of the planet, such as density, temperature, and core size. We look at the contribution of the Peltier-Seebeck effect on the magnetic field, showing that an electrical thermal current can exist in a rotating fluid sphere. Finally, we apply our calculations to Earth and Jupiter. In each case we show that the thermal generation of currents leads to a magnetic field scale comparable to the observed fields of the two planets.