We show and compare the numerical and experimental results on the electromagnetic generation of a tide-like flow structure in a cylindrical vessel, which is filled with the eutectic liquid metal alloy GaInSn. Fields of various strengths and frequencies are applied to drive liquid metal flows. The impact of the field variations on amplitude and structure of the flow is investigated. The results represent the basis for a future Rayleigh–Bénard experiment, in which a modulated tide-like flow perturbation is expected to synchronize the typical sloshing mode of the large-scale circulation and the helicity oscillation connected with it. A similar entrainment mechanism might play a role in the synchronization of stellar dynamos by tidal forces.