In recent years, research on adversarial attack techniques for remote sensing object detection (RSOD) has made great progress. Still, most of the research nowadays is on end-to-end attacks, which mainly design adversarial perturbations based on the prediction information of the object detectors (ODs) to achieve the attack. These methods do not discover the common vulnerabilities of the ODs and, thus, the transferability is weak. Based on this, this paper proposes a foreground feature approximation (FFA) method to generate adversarial examples (AEs) that discover the common vulnerabilities of the ODs by changing the feature information carried by the image itself to implement the attack. Specifically, firstly, the high-quality predictions are filtered as attacked objects using the detector, after which a hybrid image without any target is made, and the hybrid foreground is created based on the attacked targets. The images’ shallow features are extracted using the backbone network, and the features of the input foreground are approximated towards the hybrid foreground to implement the attack. In contrast, the model predictions are used to assist in realizing the attack. In addition, we have found the effectiveness of FFA for targeted attacks, and replacing the hybrid foreground with the targeted foreground can realize targeted attacks. Extensive experiments are conducted on the remote sensing target detection datasets DOTA and UCAS-AOD with seven rotating target detectors. The results show that the mAP of FFA under the IoU threshold of 0.5 untargeted attack is 3.4% lower than that of the advanced method, and the mAP of FFA under targeted attack is 1.9% lower than that of the advanced process.