Fermi arcs, i.e., surface states connecting topologically-distinct Weyl points, represent a paradigmatic manifestation of the topological aspects of Weyl physics. Here, we investigate a light-matter interface based on the photonic counterpart of these states and we prove that it can lead to phenomena with no analogue in other setups. First, we show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border. Second, we demonstrate that the Fermi arc surface states can act as a robust quantum link. To do that we exploit the negative refraction experienced by these modes at the hinges of the system. Thanks to this mechanism a circulatory photonic current is created which, depending on the occurrence of revivals, yields two distinct regimes. In the absence of revivals, the surface states behave as a dissipative chiral quantum channel enabling, e.g., perfect quantum state transfer. In the presence of revivals, an effective off-resonant cavity is induced, which leads to coherent emitter couplings that can entangle them maximally. In addition to their fundamental interest, our findings evidence the potential offered by the photonic Fermi arc light-matter interfaces for the design of more robust quantum technologies.